VR技术带来了一个非常美妙的应用场景,整个行业都在努力让用户更好的在虚拟世界里行走。本篇文章分享了VR虚拟培训系统的设计方案与模型处理步骤,带领我们更具体地了解VR虚拟培训系统设计。
本文侧重于一种通用性方法,更深入的分析需结合具体的场景,请谅解。
本系列还将产出四篇文章:
通用设计|生产信息展示平台(侧重于企业信息的整合与展示)通用设计|指挥调度系统(侧用于企业信息的传输与调度)通用设计|企业移动端(侧重于企业个人应用层)通用设计|数据共享平台(侧重于信息的采集与整理)包括这篇文章在内,是目前企业最主流的几大B端产品,形成ToB、ToG产品经理可复用的基础性的工作思路。VR是Virtual Reality的缩写,中文的意思就是虚拟现实(真实幻觉、灵境、幻真),也称灵境技术或人工环境。概念是在20世纪80年代初提出来的,其具体是指借助计算机及最新传感器技术创造的一种崭新的人机交互手段。虚拟现实是利用电脑模拟产生一个三维空间的虚拟世界,提供使用者关于视觉、听觉、触觉等感官的模拟,让使用者如同身临其境一般,可以及时、没有限制地观察三度空间内的事物。
——百度百科
随着VR设备的成熟,越来越对B端用户选择利用VR实现一套可复用的培训、训练系统。VR中的场景不仅可以实现在现实生活中难以模拟的场景,还可以大幅节约培训场地费用。VR与培训结合被称为虚拟培训。
本文提供了一种设计思路可用于各类工厂,企业的虚拟培训,如流程培训,装备培训,消防培训,应急培训等。
培训场景关注点:
受训者感受与实际场景感受差异不能过大可复用,可定制化的培训场景不受时间,空间限制的培训降低培训成本VR虚拟培训的优势:
培训场景的和模型均可复用可通过模型重制,流程设置实现培训场景的定制现有中高级别硬件(主要是显卡)足够支撑VR设备实现良好的展示效果不需要大型训练场地与设置复杂的设备,且后期维护主要为软件部分,培训成本大幅降低针对某场景的虚拟培训系统
虚拟培训系统解决方案,是基于国际先进3D开发引擎,借鉴三维领域先进的虚拟互动框架,并吸收虚拟现实头显技术,打造的具有沉浸式体验的虚拟现实解决方案。
该方案可实现可以导入各类三维设计软件模型制作的模型,并通过先进的模型精简算法将这些模型进行精简压缩,在训练系统中可以直接显示、使用这些模型,并能对这些模型进行位置、旋转、颜色等各种参数的设置,使用者可以基于这些模型自定义的编辑各种流程模拟事件,实现多人参与的模拟训练。
该方案具备将制作成品导出成不限于Windows系统的各种平台的能力,并通过VR头盔、手柄等体感装置实现沉浸式体验。
虚拟培训系统应具备情景设置、模拟、对各种事故场景提供预案、可重复性的培训演练等功能,提供培训支持。
系统的主要功能包括模型轻量化功能、资源的导入功能、互动案例的编辑功能、资料库、功能库、系统定制等方面,系统环境如下:
(1)模型导入
虚拟训练系统可以导入不同类型\等级的场景,以及目标内部及外部设备、建筑和结构等各种不同三维类软件(如工厂三维建模设计软件、Smartplant3D、PDS、UG等)产生的三维数字模型,包括但不限于FBX、IGS、3DS、STEP等格式,基本能够支持市面上绝大多数主流的三维模型制作软件。
(2)模型轻量化
由于多数三维模型顶点多、面数大,不适合直接放到主流的3D引擎中使用。本系统所采用模型轻量化技术可以实现快速、智能化、批量化的精简模型,能高效的减少原始模型的体积和几何面数,模型精简的批量化率能够达到80%及以上。
该技术拥有强大而高效的减面算法,能够解析设备类、管道类、建筑类、结构类等各种模型并进行简化。
模型精简后可以导出成常见的三维模型中间格式文件,包括但不限于 FBX、 IGS、 3DS、 STEP、 OBJ 等。
精简后的模型具有优质的质量,可以导入Maya、3Dmax等三维软件,能够转换成其它任意格式,满足各种系统的模型利用需求。
系统是一个可视化的开发和操作平台,可以实现在场景中任意的移动模型的三维坐标、调整旋转角度、查看模型参数,并能够自定义的创建和编辑各种流程模拟事件,实现多人参与的人员培训功能,同时还具备空间测量、设备标注、自由漫游、物理干涉、路线规划等一系列功能。
(1)统一的虚拟仿真软件平台
本系统中的可视化开发平台是一个统一的虚拟仿真软件平台,所有专业所使用的各种设备、建筑和结构等三维类软件所设计出的三维模型最终均在此平台中统一体现,全部成为场景中可视、可操作、可编辑的一部分,且在平台中各模型均保存有设计中的真实数据,如尺寸、位置、物理参数、化学参数等,这些数据均可在平台中查看或使用。
平台具备功能如下:
训练导调:具备任务的生成、任务的分发、训练环境生成、训练流程设计、训练协同控制等功能资料管理:具备任务中的各种方(预)案、指挥手册、行动计划以及训练大纲等资料的管理,以及对现场设施、装备和人员的音频、视频、动作和地形地貌等场景所必需资料的管理功能。模型管理:具备训练场景模型、装备模型等仿真模型的管理功能。数据管理:具备人员、装备、训练数据的管理功能流程管理:可实现训练任务、训练想定、训练科目、训练过程、训练评估的流程管理。(2)仿真模块
预置场景作为训练系统基础模拟场景。系统具备扩展场景和课件的能力,可以根据需要增减培训项目并设置相应的模拟场景和教学、考核课件。
本平台可以实现非标设备的外部导入,在本平台已投入使用后,三维模型设计人员用各种设计工具制作的原本不在本平台中的设备等模型,可以通过本平台资料库的功能,实时的导入进平台,实现平台中模型的动态扩充,并能够与平台中原有模式一样被操作使用。
除设备库外,本平台资料库的功能还包括音频库、视频库、人物动作库、地形库、材质库等各种场景中可用的资料库,这些均可从外部实时导入进平台中,以实现平台的热更新。
(3)可视化演示模拟系统
本平台中所有的模型均导入自设计阶段各专业各种三维设计软件制作的模型,是设计模型和数据的真实体现,各模型中的设计数据均能在平台中被调取,并以报表、标签、提示等各种方式进行可视化展示,并可以根据需要导入成excel等多种格式。
除了模型的真实设计数据,用户还可以根据需要为不同种类的模型添加额外的自定义数据,如生产厂家、采购时间、维护记录等,这些均可可视化展示以用于培训和实际操作的演练。
平台还具备实时获取所对应的真实设备的当前运行状态等运营数据的扩展能力,可动态显示重要设备设施的参数变化、重要设备实时工作状态。
(4)小型化同步可视化系统
本平台采用国际上成熟的技术框架,可方便的将场景发布到各种平台,如PC机、平板电脑、手机等移动设备,可运行在windows、安卓、苹果等各系统上,可以使用便携式设备作为载体用于在事故现场指挥。
(5)流程模拟系统
系统基于结构真实三维数据库,可以实现由用户自定义各种事件来形成模拟流程,用户可以将一系列设备的运动、旋转、变色、伸缩、动画、光影变化、材质变化、特效发生等各种活动制作成一个个事件,然后将一组事件连贯起来制作成一个流程模拟的训练流程,管理员可以任意的编辑此流程,包括调整流程的顺序、添加新事件、删除事件、更改时间的参数和实现方式等,实现完全的自定义设计模拟流程,可以模拟各种场景下的培训。
(6)虚拟协调训练系统
在一个流程模拟中,需要不同类别、不同权限的人员参与,协同工作以完成一项事情,本平台的多人在线系统功能以类似网络游戏的形式,支持多人同时参与,在虚拟流程中,不同人员分属于不同工种,拥有对设备操作的不同权限,按照管理员规定的操作规则,个人各司其职,协同完成一个流程模拟,达到虚拟协调训练的目的。
(7)物理干涉与人机功效分析
本平台的物理干涉功能可以实现用户自行设定平台内任意设备为运动体,同时自定义参与物理碰撞的区域,并自定义运动体的运行路线,以检测运动体按既定路线运动时是否会与周围设备或场景发生物理碰撞,能够生成碰撞报表,以验证该设备的设计方式或场景内设施安置的合理性。
本平台可以采用VR头盔、手柄、动作捕捉装置、力反馈设备等虚拟现实设备来实现沉浸式虚拟体验,用户可以身临其境的在场景中移动、用手指抓取、触碰、操作场景中的设备,配合力回馈技术和身体其他关节的形态捕捉技术,可以实现人机功效分析的功能,如验证人物是否可以方便的对场景内某设备进行操作。
(8)方案验证系统
本平台的自定义模拟流程功能可以作为情景方案合理性的验证使用,管理员可以先编辑多套流程,通过演示判断其合理性,再选择是否将其发布成所有客户端均可参与的状态。
同时,本功能还可用于制作一批指导性使用的三维动态说明书,用户可在平台中遵循操作步骤,看到每一步操作的方式方法和所能导致的效果,一步步的执行完整个说明流程。
(9)真实光照模拟
本平台可以在场景中设置各种类型的光源,可编辑这些光源的强度、范围和颜色,使得场景可以处于模拟出的真实光照环境下,以丰富流程模拟的场景环境。
(10)漫游功能
本平台可实现自然漫游和自动漫游功能。
自然漫游指用户可以在场景中,以第三人称视角任意的不受限制的漫游,使用键盘和鼠标操作控制,能够让镜头上、下、左、右、前、后平移、360度自由浏览、拉近/拉远等漫游操作。
自动漫游指用户可以自设定漫游路线,第三人称镜头会按照设定的路线进行移动,实现漫游。此外,可以设置漫游速度、漫游高度、镜头朝向。
本平台还具备实现互动漫游的扩展能力,互动漫游是在自动漫游的基础上,可以前进、停止、后退,也可换一条新的路线继续漫游,漫游中可查看漫游路线上的物品信息。
(11)标注功能
本平台可由管理员对平台中任意可操作的物品进行标注,可以以文本的方式任意标注备注信息,同时也可以标注电子地图地理信息,使得用户在漫游或模拟培训中对设备的用途、状态等信息一目了然,对周边环境地理信息一目了然。
(12)截图和录像功能
本平台的使用者可以在使用过程中直接进行截图,或对接下来一段时间的操作进行录像,录像以MP4格式保存。
(13)测量功能
本平台的使用者可以任意测量场景中两个位置之间的距离,也可以测量某两个指定设施间的距离。
(14)路线规划功能
本平台可以由用户在场景中自定义路点,在路点覆盖的区域内,可以自动规划出最近的行进路线,并可设置阻碍点,以模拟区域内某些位置因某些原因无法通行时的合理行进路线。
(15)丰富的特效支持
本平台具有丰富的模拟特效功能,可实现起火、爆炸、烟雾、气化、流体等各种逼真的特效。
(16) 物理引擎支持
本平台采用先进的物理引擎,可以逼真的模拟各种质量和形状的物品碰撞后的物理效果。
(1)VR虚拟头盔和手柄
本系统采用的VR虚拟头盔硬件,能实现沉浸式虚拟现实体验,2K级别的显示屏,并具有广视角、高刷新率、低眩晕感等特点。其配置的手柄灵敏度高、功能齐全、可开发性强,能够以发射射线的方式实现在虚拟场景中行走、显示设备数据、触发设备事件等功能。
手柄同时具备震动功能,程序中可方便的设定在何种交互状态下触发手柄的震动,震动的时间长短均可设置,以达到模拟力反馈的效果。
(2)手势追踪技术
本系统采用的手势追踪技术,拥有通过 26 自由度手势追踪以及 6 自由度位移追踪等关键技术,实现在虚拟现实及增强现实场景中的三维人机交互。
三维手势追踪:利用双目摄像头及三个红外发射器用于手势动作识别,根据 26 个自由度辨别手部姿态,收集动作信息,3D 手势建模。通过计算机图形算法实现精准及超低延迟手势追踪。用户可以直接用手进行自然的人机交互。
位移追踪:利用头显设备内置6 自由度位移追踪,识别用户头部的转动及身体位置,检测相对位置的变化,内置高性能惯性测量单元和 AHRS 算法保证了高性能的方向检测,还原人眼的真实视觉效果,为用户在 VR 环境中提供更好的沉浸感体验。
考评系统由以下各部分组成:
(1)训练考评控制系统的操作号手操作平台
操作号手可在平台中实现查看成绩、训练信息、课程信息、查阅资料、与考官沟通反馈,获取新发布的三维模型或客户端新版本等和学习和培训中相关的功能。
(2)训练考评控制系统的考官操作平台
考官可以在平台中实现发布学生成绩、训练、课程、资料等信息,进行模拟流程的方案制定,管理班级和操作号手,并和其他考官、操作号手及管理员沟通反馈等教学中所需的功能。
(3)训练考评控制系统的管理员管理平台
管理员负责管理整个虚拟系统里所有的数据,包括三维模型的数据,考官、操作号手的相关个人数据和教学数据,发布新的培训课程,发布新的三维模型或客户端新版本等功能。
(1)VR技术防眩晕功能仍不完善。眩晕主要是由于画面延迟造成的,后续5G大带宽、高延迟体验有助于解决这一烦恼。
(2)VR本质实现的还是画面的重现,尽管某些设备添加了震感,但仍无法完全替代需要现场手感的培训,后续可通过丰富的穿戴设备及现场环境的进一步模拟实现(如风感,流体感,温度变化等)
(3)现有手势识别设备精度仍不足,与软件中模型的交互时有bug发生。
(4)近视用户仍需手动调节焦距
(5)整个系统的建模过程工作量仍很大,尤其是对于一些需要原始重建的模型,不能用到现有的素材。模型的标准化仍不完善。
沉浸式体验教学、远程互动教学、虚拟操作培训等场景。
5G的大带宽、高可靠、低时延等特点能让大量本地运算放于云端,解决硬件配置的限制,大幅提高画质。现有的VR场景是通过提前建模设置,5G的大带宽允许利用VR远程摄像头/高清8K摄像头,采集培训现场360°全景高清图像,通过5G网络回传到采集媒体处理平台,经实时处理后,教官与受训人员可映射到同一虚拟“场地”,实现远程互动教学。解决不能身临其境,亲手操作的问题。
本文由 @大阳 原创发布于人人都是产品经理。未经许可,禁止转载
题图来自Unsplash,基于CC0协议
虚拟现实类的APP 要怎么设计?其实你已经可以自己动手设计了,其中所需要注意的要点,都已经汇总到下面的文章里面,实操性极强 ~
虚拟现实(VR)是一种屏蔽现实世界的完全沉浸式的体验。常见的VR设备很多,包括HTC Vive, Oculus Rift 或谷歌 Cardboard。用户可以进入各种模拟真实的世界和想象的场景,比如站在一群尖叫的企鹅中间,甚至怪物的背部。
除了虚拟现实,还有其他的现实体验,比如增强现实、混合现实和扩展现实,它们为用户提供了不同的体验。
AR、VR与混合现实的区别
增强现实(AR)通常通过智能手机上的摄像头为实时视图添加数字元素,增强现实体验的例子包括Snapchat镜头和游戏《Pokemon Go》。
混合现实(MR)体验结合了AR和VR的元素,以及真实世界和数字对象的交互。混合现实技术现在正处于起步阶段,微软的HoloLens是早期最著名的混合现实设备之一。
在过去的几十年里,市场为设计师们提供了大量可靠的作品,且向着生动的3D内容新范式迈进。声音、触觉、深度和感觉都是VR体验的基础,即使是最新颖的2D屏幕体验也会让人感到疲惫和过时。
VR提供了许多与真实环境训练相同的好处,但用不会遭遇现实状况下常见的各种安全风险。如果受试者感到不知所措,他们可以摘下耳机或调整体验。这意味着医疗、军事、警察等特定行业应该优先考虑如何使用VR进行培训。
就拿Skype来说吧,VR有潜力将数字工作者聚集在数字会议上,就像Facebook Live with VR一样进行实时事件报道。比起仅仅在屏幕上看到另一个人,通过VR设备你能感觉到尽管你们相隔万里,但你仿佛和他们坐在同一个房间里。
想想当下人们是如何运用触摸屏的,我们可以通过许多例子来理解——滑动、压缩缩放和长时间轻击以提供更多的选择。这些都是可以在虚拟现实环境中进行设计的。我相信,随着越来越多的创造者进入VR领域,将会有更多的人从事全新的UI设计,帮助企业发展。
虚拟现实中的交互性由三个要素构成——速度、范围和映射。速度即虚拟世界的响应时间,虚拟世界对用户行为的响应越快越好,因为响应的即时性会影响环境的逼真度。许多研究者试图用不同的方法来确定虚拟现实交互的特征和组成部分。
然而,为了完美地做到这一点,设计师必须全面理解现实世界,这意味着他们需要对用户周围的典型现实空间进行可视化,然后在已知元素基础之上展开建构。这样做的原因是避免让用户感觉新引入的元素正在侵犯他们的个人空间。
从设计师的角度看,VR应用由两类组件组成:环境和界面。
你可以把环境想象成戴上VR头盔后进入的世界——你发现自己身处其中的虚拟星球,或者你乘坐过山车时看到的景象。
界面是用户与环境产生交互的元素,界面可以对环境进行导航,并控制他们的体验,所有VR应用都可以根据这两个元素的复杂程度沿两个轴进行定位。
在左上角的象限是类似模拟器的东西,比如上文提到的的过山车体验。它们有一个近逼真的环境,但是没有界面,你只是被锁在车里。与之相对的象限是开发界面做得很好但环境单一的应用程序,三星的Gear VR主屏幕就是一个很好的例子。在你开始设计之前,认真思考以下几个基本问题也许会对你有所帮助:
用户要从哪里开始?如何引导用户?你是想提供详尽的指导,还是创建一个不会让用户有过多选择的极简环境?不要寄希望于用户知道自己应当怎样做。缓慢而渐进的熟悉、视觉线索和来自软件的指导都应该用来帮助用户。当你为VR设计时,你是为人们的能力而设计,就像你为系统的能力而设计一样,所以你必须了解你的用户以及他们体验VR时可能出现的问题。
VR体验与设计web或移动产品的过程并没有太大的不同,您需要构建用户画像、概念流程、绘制线框图,制作可交互原型。
虽然大多数设计师已经建立了自己设计移动应用程序的工作流或设计流程,但VR界面的设计流程还没有一个在全球范围内通行的定义。设计你的第一个VR应用程序,你应该从逻辑上的第一步开始,即设定战略或计划。
画布尺寸:
要将常见的移动APP的工作流应用于VR UI,首先必须确定一个合适的画布大小。
下面是一个360度的环境被压平后的样子,这种形式称为等矩投影。在三维虚拟环境中,这些投影围绕着一个球体来模拟真实世界。
投影的全宽表示水平方向360度和垂直方向180度,我们可以用这个来定义画布的像素大小:3600×1800。以大尺寸进行设计,算得上是个挑战,但因为我们主要关注VR应用的界面,所以我们只需专注于这个画布的其中一部分。
基于Mike Alger对舒适可视区域的早期研究,我们可以分离出对界面呈现有影响的部分。我们需要关注的区域是360度环境的九分之一。它位于等矩形图像的正中央,大小为1200×600像素。
总结一下:
「360全景视图」:3600×1800像素「UI视图」:1200×600像素拿起纸和笔: 在使用软件之前,先把你的想法记录在纸上。这种方式快速、廉价,并且可以帮助你表达可能需要花费数小时在软件上的想法。这一点尤其重要,因为从草图到高保真度在3D中比在2D中花费更多。
软件: 一些设计师会使用已知的工具比如Sketch,另一些借此机会来学习使用新工具。重要的是要选择合适的引擎来创建应用程序。如果你正在创建一个3D游戏,你可以使用Unity或Unreal引擎。C4D和Maya也被广泛使用,但主要用于复杂的动画和渲染。
文本可读性:
由于显示的分辨率,所有漂亮而清晰的UI元素看起来都是像素化的。首先,这意味着文本将很难阅读,其次,在直线上会有很大程度的混叠。因此要尽量避免使用大的文本块和非常详细的UI元素。
预设阅读间距:即我们设计的观看距离。这些屏幕的最佳观看距离是多少?预设的阅读距离将决定屏幕的大小以及其中内容的大小和密度。
单位也很重要。非长度单位的毫米或dmm(丝米,decimilimeter)可以描述为一米之外的一毫米,所以它是一个角度单位,当它向远处扩展时,它只以毫米级增加。
让我们看一个具体的例子:在这个图的左上角有一个用dmm测量过的屏幕空间布局,所有的UI元素都是用dmm测量的。它是400×480 dmms高,然后我将这种布局应用到三个独立的虚拟屏幕上。
所有这些虚拟屏幕都有不同的预设阅读距离,虚拟屏幕的优势在于,所有这些屏幕都是用来观看的,它们对用户来说看起来是一样的,它们有相同的角度大小,文本也一样易读,按钮也一样可点击,运动也一样。
当我们第一次为VR设计时,想到创造出我们在《钢铁侠》(Iron Man)或《少数派报告》(Minority Report)等好莱坞大片中看到的那种未来感十足的界面是令人兴奋的,但现实是,那些UI如果使用超过几分钟,就会让人精疲力尽。
下面的图表有助于说明运动区域的舒适范围:
我们都曾受到某种低头族综合症的影响(长时间低头看智能手机会感到疼痛)。根据你俯身的距离,不良的姿势会给你的脊椎造成60磅的压力,这会导致脊柱和颈部永久性的神经损伤。
避免「模拟器眩晕症」:
虚拟现实还需要进行生理学层面的考量。就像飞行员在训练中使用的飞行模拟器一样,虚拟现实有可能在现实和视觉运动线索之间呈现不匹配——当你的眼睛认为你在运动,但你的身体没有运动。这种不匹配会产生恶心感,被称为「模拟器眩晕症」。
了解虚拟现实设计的生理效应,并遵循这些指导原则,对于让你的应用成功并确保用户避免模拟器眩晕症至关重要。
亮度范围:
要注意亮度的突然变化,由于屏幕离用户的眼睛很近,当用户适应新的亮度水平时,从黑暗场景过渡到明亮场景可能会引起不适。这就如同从一个黑暗的房间走到阳光下。
按钮放置:
避免安全按钮间距过近。当安全按钮较大,彼此间距较远时,其效果更好。
如果多个较小的按钮彼此靠近,用户可能会不小心单击错误的按钮。相互靠近的小按钮应该需要直接单击才能激活。
「我们与VR平台的互动需要尽可能自然和直观,而不是试图让自己适应现有技术支持的有限互动。」
Sketch: Sketch to VR是一个素描插件,它使用的是 A-Frame。Sketch to VR插件会自动创建一个A-Frame网站,但是我们只需要在Sketch中进行设计就好了。
Google Blocks: 使用简单的三维几何来模拟尺度和深度。如果你有一个Oculus Rift 和 HTC Vive,你可以使用Google Blocks来模拟你的想法。这并不是你最终呈现在用户面前的东西,而是便于你直观地感知3D环境。
Photoshop: 我们可以使用像钢笔和画笔这样的核心图像编辑工具,来绘制三维空间中的元素。
设置「360全景模式」
首先创建一个画布来表示360度全景视图。在Sketch中打开一个新文档,创建一个3600×1800像素的画板,导入文件并将其放在画布的中间。如果使用自己的等矩形背景,请确保其比例为2:1,并将其大小调整为3600×1800像素。
设置画板
如上所述,「UI 视图」是「360全景视图」的裁剪版,只关注VR界面。在之前的画板旁边新建一个画板:1200×600像素,复制背景添加到「360全景视图」,并把它放在我们的新画板中间。不要在这一步调整它!在这里保留一个裁剪过的背景。
设计界面
在「U视图」画布上设计界面。做示范起见,我们将简单地进行界面设计,并添加一行tile。复制它,并创建一组水平放置的3个tile。
合并画板并导出
将「UI视图」画板拖到「360全景视图」画板的中间,以PNG格式导出「360 全景视图」画板。「UI视图」将位于它的顶部。
进行VR测试
打开 GoPro VR播放器,将刚刚导出的「360全景视图」PNG 拖拽到窗口中。用鼠标拖动图像,可以预览360度的环境。
原型设计
在这一步,将屏幕组织成流程,在屏幕之间绘制链接,并描述每个屏幕的交互关系。我们将其称为APP蓝图,它将作为项目开发人员的主要参考。
作为一名设计师,我认为应当开始提高我们的技能,创造设计行业的未来,设计师的专业技能在提高和改善应用程序用户的日常生活方面具有重要作用。在设计思维和UX方法论中使用的概念和构思方法和先前相差无几,重点是上面提到的这些新的交互原则。
感谢阅读!阅读之后你有什么想法?
参考资料:
https://www.smashingmagazine.com/2017/02/getting-started-with-vr-interface-design/
https://www.forbes.com/sites/quora/2018/02/02/the-difference-between-virtual-reality-augmented-reality-and-mixed-reality/#374bb2702d07
https://blog.marvelapp.com/designing-vr-beginners-guide/
作者:Sourabh Purwar;Jagadeesh Kampara
原文链接:https://uxplanet.org/designing-user-experience-for-virtual-reality-vr-applications-fc8e4faadd96
译者:陈子木
来源:https://www.uisdc.com/designing-ux-for-vr
本文由 @陈子木 授权发布于人人都是产品经理,未经作者许可,禁止转载
题图来自Unsplash,基于CC0协议
相关问答
设计师完全自学指南本文译自国外高质量问答社区Quora,原文作者KarenX.Cheng,原是微软Excel的项目经理,后通过自学转型成为设计师。她讲述的自学过程详实细...
不错。1.VR教育培训需要打造出来,全面的VIP需要有充分的时间积累以及丰富的行业经验,产品需要构建出来,节约成本,高效安全。有针对性的内容,并且加入创意...
不同于老一套的讲课、PPT图片展示、案例警示等安全教育与培训形式,北京华锐视点利用VR技术结合多元化的培训内容,带给电力人员新颖、高效的培训体验。同时...不...
[回答]强的教学实力,而且在学技...总部在深圳,在业内无论是行业口碑、还是声望都还挺高的,只要是想做这块的,你可以去他们官网了解一下,非常的棒。我们...
VR学费全款是19800元,一般培训开班首期、二期会持续优惠2000元。对于学生党,一般培训机构也是可以贷款学习的,也就是两种交费。全款、贷款,贷款期间没有任何...
VR需要学的东西有很多的,Office办公自动化Photoshop图像处理素描、水粉游戏原画艺术设计摄影摄像二维flash动画制作职业素养课Maya场景道具及角色模型...
学会用简单,但是要精通的话就得依靠自己去不断积累了。AR/VR是以后的发展方向,而且5G的到来也加速了这一行业的快速发展,所以还是不错的。培训的话建议去优就...
[回答]VR专业学要学习构成基础:平面构成、色彩构成、立体构成、手绘效果图技法、AutoCAD图形设计建筑环境艺术设计、材料及施工工艺、天正建筑、摄影与摄...
我们今天主要讲的VR在工业领域的应用。所以再举一个工业安全方面的例子:你可能正在一家危险化学品生产企业准备开车操作,从值班室到脱丁烷塔的塔底泵,甚至以检...
有的,专业的计算机培训学校都有VR空间设计专业,而且未来房屋装修几乎是呈现三维立体的形式,也是受大家能直观看到的装修效果,未来不可或缺的技术。行业前景比...